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Abstract—Application markets streamline the end-users’ task
of finding and installing applications. They also form an imme-
diate communication channel between app developers and their
end-users in form of app reviews, which allow users to provide
developers feedback on their apps. However, it is unclear to which
extent users employ this channel to point out their security and
privacy concerns about apps, about which aspects of apps users
express concerns, and how developers react to such security- and
privacy-related reviews.

In this paper, we present the first study of the relation-
ship between end-user reviews and security- & privacy-related
changes in apps. Using natural language processing on 4.5M
user reviews for the top 2,583 apps in Google Play, we identified
5,527 security and privacy relevant reviews (SPR). For each app
version mentioned in the SPR, we use static code analysis to
extract permission-protected features mentioned in the reviews.
We successfully mapped SPRs to privacy-related changes in app
updates in 60.77% of all cases. Using exploratory data analysis
and regression analysis we are able to show that preceding SPR
are a significant factor for predicting privacy-related app updates,
indicating that user reviews in fact lead to privacy improvements
of apps. Our results further show that apps that adopt runtime
permissions receive a significantly higher number of SPR, show-
ing that runtime permissions put privacy-jeopardizing actions
better into users’ minds. Further, we can attribute about half of
all privacy-relevant app changes exclusively to third-party library
code. This hints at larger problems for app developers to adhere
to users’ privacy expectations and markets’ privacy regulations.

Our results make a call for action to make app behavior more
transparent to users in order to leverage their reviews in creating
incentives for developers to adhere to security and privacy best
practices, while our results call at the same time for better tools
to support app developers in this endeavor.

I. INTRODUCTION

Application markets such as Google’s Play or Apple’s App
Store are core components in mobile software ecosystems.
They constitute centralized markets for developers to distribute
their apps and for end-users to search, download, and purchase
applications. Similar to online retail markets, end-user reviews
are a key element to the success of app markets. Users that
have used an app can write reviews—short text messages typi-
cally including a star-rating—to express their opinion about an
app and help other users to choose between similar apps. At
the same time, reviews can also be used as a direct feedback
channel to app developers, e.g., to express feature requests or
to report bugs and security issues. The app developers, in turn,
can react to this feedback and reply to their users.

Although user reviews form a direct communication channel
betwen users and developers, past research on security and pri-
vacy protection has—to the best of our knowledge—not given

this channel any attention. Prior research focused instead, for
instance, on providing users with support in choosing less risky
apps [1], [2] or on helping users making informed decisions
whether or not to grant permissions to an application [3], [4],
[5]. Although such support is undeniably valuable for helping
users, we believe that those also form short-term solutions
that do not immediately tackle the root cause of developers
releasing apps that disregard privacy best practices. For apps
to improve their security- and privacy-related behavior in the
long-run, feedback should not only be directed to end-users
but also to developers, ideally in a way that the developers
have incentives and motivation to update their apps according
to the security and privacy concerns of their users. User re-
views would seemingly form such an immediate feedback and
rating channel for security- and privacy-related user concerns.
Unfortunately, the extent to which reviews can provide this
kind of feedback and how developers react to such feedback
have not yet been investigated.

In this paper, we study the connection between security- and
privacy-related reviews (SPR) and security- and privacy-related
app updates (SPU). Concretely, this includes questions like
“To which extent do SPR trigger SPU in apps?”, “How often
do app developers react to SPR (e.g., due to the fear of follow-
up reviews with low ratings and a potential financial loss)?”,
and “What kind of SPU do app developers do in consequence
of SPR?” To answer those questions, we first build a crawler
to collect the complete version histories of the top 2,583 apps
(62,838 app versions) on Google Play and their corresponding
4.5M user reviews. We then use supervised learning techniques
to identify 5,527 security and privacy relevant reviews. By
retargeting the release dates for both the app versions and
the reviews, we connect those SPR with the corresponding
app version that was mentioned in the SPR. Using static
code analysis, we classify the changes between those user-
reviewed app versions and their immediate successor versions
as SP-relevant when later app versions behave more privacy-
friendly. Using recent advances in statically detecting third-
party libraries [6], we are able to attribute those SPU to either
app or library code changes. Using this data set, we then
set out to thoroughly examine the impact of user reviews
on the SPU of android applications. We build a statistical
regression model that takes different factors into account that
could affect the update of an app, including users’ variables
(e.g., ratio of SPR received, and review star rating) and app
variables (e.g., permission mechanism, the ratio of replies to
reviews, and app category). By applying our regression model



to our entire data set of reviews and app histories, we are
able to show that SPR are significant predictors of SPU in
Android applications. This means the more SPR an app version
receives, the more likely the subsequent version of the app will
be an SPU. Additionally, our results show that of all SPU,
only 17.06% could be uniquely attributed to app code while
48.81% could be uniquely attributed to (closed-source) third-
party code, meaning that in most cases SPR complained about
app behavior that was added to the app through inclusion
of third-party code. Furthermore, through statistical testing,
we confirm that app versions that use Android’s run-time
permission dialogs raise more suspicion from users, expressed
through a significantly higher rate of SPR for those app
versions (1.46 times more than for install-time permissions).

Based on those results, we conclude that SPR indeed have
a positive influence on the privacy-related development of
apps and that there is a clear call for action to not only
support users in making better choices but also making app
behavior explicitly more transparent to users to foster higher
rates of SPR that express users’ privacy attitudes and create
incentives for developers to adhere to privacy best practices.
Developers, on the other hand, clearly need support in this
task, in particular in estimating the impact of included third-
party code onto their apps’ privacy-critical behavior.
In summary, we make the following contributions:

• We investigate security- and privacy-relevant features in
apps that can be perceived by end-users (e.g., permission
requests and data accesses) and map them to permission-
based functionality that can be extracted from apps.

• We build a longitudinal repository of 2,583 applications
and their 4.5M user reviews. We build a classifier to
identify SPR with a very good accuracy (mean AUC value
of 0.93). By retargeting app release dates, we can map
SPR back to their affected app versions in 88.62% of all
cases.

• We statically extract permission-based features from apps
mentioned in SPR and identified SPU of apps in 60.77%
of all SPR. Further, 48.81% of those SPU can be at-
tributed exclusively to (closed-source) libraries.

• We build a statistical regression model to evaluate the
impact of different factors on apps’ SPU, including users’
variables and app variables.

• Our approach reveals that SPRs are a significant predictor
of SPU of Android apps and that apps supporting runtime
permissions dialogs receive 1.46 times more SPRs than
apps with install time permissions.

Outline: This paper is organized as follows. We give an
overview of related work in Section II and describe our
methodology in Section III. We empirically analyze our data in
Section IV and explain our regression model to predict SPU in
Section V. We discuss our findings and draw actionable items
in Section VI and conclude in Section VII.

II. RELATED WORK

Android security, and in particular application security and
the role of developers in the mobile ecosystem, have been

studied from different angles in the past. To put our study
on user reviews and their connection with the security and
privacy evolution of apps into a larger context, we present and
discuss in this section briefly related works on using natural
language written texts for app classification, app reviews in
general and their automatic processing, as well as closest
related developments in app security.

Using natural language processing: Past research has
successfully mined software artifacts and connected them with
the app descriptions regarding security and privacy aspects.
For instance, Gorla et al. used the applications’ descriptions
to examine whether or not the description matches the applica-
tions’ behavior [2]. The authors proposed Chabada, a solution
to cluster apps by their topics based on their description,
and to identify outliers, i.e., apps whose behavior deviates
from the usage of permission protected APIs within each
cluster. Further, Pandita et al. [7] proposed Whyper and Qu
et al. [1] proposed AutoCog, two systems that also mine
Android application descriptions and then use natural language
processing (NLP) to automatically bridge the semantic gap
between what applications do and what users expect them
to do from their description. All of them, Chabada, Whyper,
and AutoCog, work on app descriptions written by developers.
On the other hand, our study focuses on reviews written by
users, which are usually authored on smart phones, and hence
often contain typos and do not necessarily follow grammatical
structures [8], [9], [10].

Processing app reviews: App reviews play an important
role for the success of an app. They are the primary chan-
nel through which developers receive feedback about their
applications, such as how users perceive their apps, which
features users are requesting, or which aspect of the apps
users favor. By default, this channel is public and available
to current and potential future users. However, inspecting
such reviews is a challenging task for developers as apps
receive a high number of reviews every day. Prior work by
Pagano and Maalej [11] found that iOS apps receive on
average about 22 reviews per day and popular apps, such
as Facebook, receive magnitudes more reviews. Moreover,
reviews are not easy to automatically analyze given their
unstructured forms. Existing work by Chen et al. [12] has
shown that only about one third of the user reviews are
actually informative to developers. Different prior works have
focused on automatically identifying useful user reviews for
developers. Palomba et al. [13] proposed ChangeAdvisor to
support app developers in classifying feedback useful for app
maintenance. ChangeAdvisor combines NLP, text analysis,
and sentiment analysis to automatically classify app reviews
written by end users. Fu et al. [14] proposed WisCom, a
tool that analyzes user comments and ratings in mobile app
markets. WisCom uses regression models and latent dirichlet
allocation models to analyze the comments’ topics. It is able to
discover inconsistencies in reviews and determine why users
dislike a given app. However, none of these works focuses
on the connection between app reviews and the application’s
security and privacy evolution.
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Fig. 1. Overview of our methodology

App security evolution: Calciati et al. [15] studied how
the permissions requested by apps evolve across different app
versions. Their results show that apps tend to request an
increasing number of permissions in their evolution and many
newly requested permissions are initially an over-privilege of
the app (i.e., a direct violation of the least privilege principle).
Violation of least-privilege by app developers is unfortunately
a long-standing problem, first identified by Porter Felt et
al. [16]. Given the central role of permissions for data pro-
tection on Android, past research has also investigated how
users should be confronted with permission requests, most
noticeably early studies by Porter Felt et al. [17], [18] that
investigated users’ concerns connected to permission protected
resources and that gave different recommendations, respec-
tively, which are partially reflected in a recent paradigm shift
of Android’s design from install-time to runtime permission
delegation. More disruptive proposals try to eliminate the
explicit role of the user for permission granting, e.g., through
user-driven access control as proposed by Roesner et al. [5]
or the use of machine learning as proposed by Wijesekera et
al. [4] and Olejnik et al. [3]. Most recently, different works
pointed out the risks of third party libraries, in particular of
advertisement libraries [19], [20], [21], [22] and of vulnerable
libraries [23], [6]. However, to the best of our knowledge, we
are the first to study the connection between user reviews and
Android application security and privacy evolution.

III. METHODOLOGY

In this paper, we automatically identify security- and
privacy-related reviews (SPR) and map SPR to security- and
privacy-related updates (SPU) of the corresponding applica-
tions. Figure 1 gives an overview of our methodology. We
collect the dataset for our analysis with a custom built crawler,
which mines Android applications and their version history
as well as the apps’ reviews from Google Play. After having
collected the apps and their reviews, a classifier identifies
SPR. Once we have the set of SPR, we establish correlations
between SPR of apps and the security and privacy relevant
changes within the corresponding apps’ release history (S&P
Mapping). In the following sections, we will describe the
different steps of our methodology in details.

A. App and Review Crawler

1) Mining user reviews: The collection of the user reviews
from Google Play consists of two steps: collecting the reviews’

text as well as their scores, and then pre-processing the text
for later classification.

We built a crawler to collect Android application reviews
from Google Play. As previous studies [24], [25] have shown
that only a small fraction of free applications on Play ac-
counts for the bulk of the application downloads—a so called
superstar market—we focus our collection of applications on
those apps that are most popular among the users of Google
Play. Therefore, our crawler collects all Android applications
that have at least 50,000,000 downloads, which results in
2,583 distinct applications as of July 2017 when we collected
our dataset. It might seem that 2,583 apps is a very small
number of applications in comparison to other market studies
on Android, but it has to be considered that we also crawl each
app’s version history and their corresponding reviews. Thus,
we trade a large-scale cross-sectional study, as favored in most
other studies on Play, for a longitudinal study of apps that
allows us to analyze the evolution and influence of SPR on app
security and privacy. Since downloading each app’s version
history easily amplifies the required time for data collection
and analysis [6], we chose to limit our data collection, both
app version histories and reviews, to apps that have at least
50,000,000 downloads. We explain the technical realization of
our app collection further down.

We only crawl reviews that were written in English by
selecting the Play web interface language code accordingly.
Besides the review text with its rating score, we also gather
developer responses (if available). Our dataset as of September
2017 contains 4,547,493 reviews. We will elaborate on how
we compiled this list of reviews later on when explaining our
training dataset for our review classifier (see Section III-B)

2) Crawling app history: Studying security and privacy
relevant changes of applications (SPU) and their connections
with user reviews requires building an app repository with
historical information about apps, i.e., including all versions of
a particular app, which allows analysis of an app’s evolution.
To this end, we adopt the approach of Backes et al. [6] that
used an undocumented market API to query Google Play for
older versions of an app. In the following, we will explain
how we obtained the complete history of the top 2,583 apps in
Play from September 2017, resulting in a repository of 62,838
distinct app versions (i.e., on average 24.33 versions per app
in our collection).

a) History collection: The Play API allows us to query
for app versions using the app’s packagename and version
code. However, there is no option to list the available ver-
sions for a given app. Thus, building the history of an app
requires probing for existing version codes. The version code
is an integer number that must be monotonically increased
with every app update, but there is no official numbering
scheme enforced. Although the majority of app developers
simply increases the version code by one, related work [6]
has shown that some developers use special date patterns,
such as YYYYMMDDVV where VV is the revision-per-day. Since
exhaustively probing for the existing version codes of each app
is very time consuming, we set the threshold for version codes
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that we test to a maximum of 40k. This gives a coverage of
82.3% for the apps in our data set, i.e., for 2,126 out of 2,583
apps this threshold is higher than their highest version code
on Play. Figure 2 illustrates the relative cumulative frequency
distribution of the maximum version codes in our data set.

b) Release dates: A second major drawback of the Play
API is that it is not possible to query for release/upload dates
of old app versions. In order to be able to map reviews to app
versions by date, we follow the approach of related work to
collect missing release dates from market analysis companies,
such as appannie.com, apk4fun.com, and appbrain.com. In
total, we were able to recover the upload dates of 81.52%
of all app versions in our data set (51,225 of 62,838). For a
set of 957 apps we were able to retrieve the complete version
history. For the remaining 1,169 apps we have an incomplete
set of upload dates, for whose majority (790 of 1,169) we
miss the long tail of upload dates, i.e, we could not recover
dates for early versions that were published before any of the
market analysis services started to collect data. Figure 3 shows

TABLE I
SECURITY- AND PRIVACY-RELEVANT KEYWORDS

Permissions Key words

Account account access, account
Bluetooth bluetooth, bluetooth devices
Calendar read calendar, calendar, write calendar
Contact read contacts data, write contact, contact
Location location, track, gps
Mail mail, voicemails
Media picture, photo, media, files, take picture, taking

picture, camera
Messages sms, receive mms, send mms, messages, read mes-

sages, sms, read sms, send sms, mms, receive sms
Network network, network state, wifi information, wifi, in-

ternet access, internet, network connectivity
Notification notification, system alert window, system alert
Phone phone call, phone number, outgoing call, manage

call, phone state, call, call log, call’s log, log, sip
Sensor sensor data, sensor, fingerprint, nfc, vibrate
System package size, install shortcut, delete package, bat-

tery info, reorder tasks, boot, boot completed, wap
push, run in background, root

Storage write storage, storage, read storage, sd card, SD
card, file

General
keywords

permission, access, intrusive, identity, personal
info, malware, virus, malicious

the distribution of 790 apps for which we miss the long tail
of upload dates. For about 70% of these apps, less than 30%
of the whole app history is missing.

B. Review Classifier

A naı̈ve way to identify SPR would be using keywords.
However, this is not an easy task, since we cannot study
millions of reviews to pick a representative keyword list.
Besides, a review written by users can have multiple sentences.
If we only use keywords to identify SPR, we may miss
other information that comes from the nearby sentences that
may contain interesting information but not the predefined
keywords. Hence, by using machine learning techniques to
learn not only the sentence with keywords but also the nearby
ones we can expand our classifier’s knowledge. For instance,
consider the following review: ”Why do you need access to
my location? Why on gods good green earth does your app
need access to my location info? One star for the privacy
steal.” If we would use keywords, we can only determine the
first two sentences as security- or privacy-relevant. However,
the last sentence is also an indicator that this app is perhaps
doing something fishy. This is an important feature that we can
put into a classifier without having to learn the phrase privacy
steal. Later on, if our classifier encounters similar reviews,
even without the presence of privacy-related keywords (here:
location), it is still able to classify them as SPR (e.g., ”This
app steals your info”).

a) Training set: Given the large amount of reviews and
the anticipated low portion of SPR, it is not feasible to manu-
ally label a representative set of reviews while simultaneously



balancing the number of SPR and non-SPR. Therefore, we first
look at reviews that mention Android permissions or resources
that are by default protected by an Android permission. We
then manually examine some SPR to pick further keywords
mentioned in such SPR and visit the Android documentation
regarding the mentioned permissions to further complement
our keyword list with the information from the documentation.
We strongly focus on permission-protected resources, because
this is the only interaction that end-users can usually observe
when they interact with the apps, e.g., install-time permission
dialogs (prior to Android 6) or intercepting dialogs for runtime
permission requests (Android 6 or later). It is rather uncom-
mon to see layman users that are not security experts using
extra analysis tools (e.g., Xposed modules [26]) to track data
flows within applications for privacy violations or to detect
insecure network connections of apps.

Table I shows the list of compiled keywords we use in our
analysis. This list results in approx. 1.85M reviews that are
potentially security and privacy related. We randomly picked
4,000 reviews to manually label them. We consider a review
as SPR if the user mentions the app’s requested permissions,
keywords related to accessed resources, or other general SPR
keywords (see Table I); otherwise we consider the review as
non-SPR. After removing some malformed reviews (e.g., we
were unable to determine what the reviews meant), our training
set contained 3,891 reviews (SPR: 586, non-SPR: 3,305). To
account for imbalanced data (SPR vs. non-SPR), we apply
SMOTE [27] to over-sample the SPR class.

b) Features extraction: Characters of n-grams are com-
monly used features in text classification [28], [29], [30].
Character n-gram features for a review are all n consecutive
letters in that review. For instance, the 5-grams for the review
”Why does this app need access to my location” are why d,
hy do, y doe, does, oes t, es th, [...] , locat, ocati, cation. We
use n-grams of characters instead of words, because reviews
written by users often contain typos, and by using n-grams
of characters, we can reduce the influence of typos onto the
classification. Prior work of McNamee et al. [31] showed that
n = 4 (characters) is a good choice for European language
text retrieval, while Dave et al. [32] reported that unigrams
(n = 1) of words outperform bigrams when conducting text
classification of movie reviews. Inspired by their findings, we
choose n = 3, 4, 5 as our n-gram models, which also yielded
the best results during experiments with our training data.
Before extracting n-grams of the reviews, we apply different
text pre-processing techniques to obtain a better quality data
set since user reviews are often written on smart phones, hence
they tend to be very short and usually contain grammatical
mistakes or typos [8], [9], [10]:

• Remove stopwords: remove articles from the user reviews
(e.g ”a”, ”an”, ”the”)

• Stemming: reduce inflectional forms to a common base
form of a word (e.g. am, are is→ be)
c) Machine learning model: Classifying reviews belongs

to the task of natural language processing (NLP) and the most
common NLP approach for using machine learning to classify
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Fig. 4. ROC curves of the 10-Fold cross-valication for our SPR classifier

text documents is using Bag of Words [33]. With bag of words,
each text document is represented as the bag of its words
regardless of its grammar forms and its orders. Occurrences
of each word is used as feature for training classifiers. We use a
Support Vector Machine (SVM) Linear kernel for our classifier
as it has been shown to be effective for text classification [34],
[35], especially for short documents [36]. We form bag of
words by splitting the reviews at spaces and punctuation
marks, and use n-gram model to extract features for our
classification task.

d) Validation: To validate our approach, we use k-Fold
cross validation with k = 10, as prior work of Kohavi [37]
has shown that this is the best method for cross validation.
Besides, we choose AUC (area under the ROC curve [38])
as our classifier evaluation metric because it is not sensitive
to imbalanced class distribution (SPR vs. non-SPR) and was
widely used in prior work as the metric for imbalanced data
classification [39], [40]. Figure 4 shows the AUC values for
our 10-Fold cross validation. Our classifier has an AOC’s mean
value of 0.93 as its accuracy in classifying SPR (a classifier
with perfect accuracy would have an AUC of 1.0).

C. Static App Analysis

So far we have built the data model that allows us to
map SPR to the enclosing set of app versions by using both
app version release dates and the date of the review. In
order to measure the effect of an SPR on app security and
privacy, we conduct static analysis on the version immediately
preceding the SPR and the updated versions after the SPR
to find potential SPU. For the majority of end-users the
install-time permission list and runtime permission requests
are the only information to assess whether the advertised
functionality (e.g., via the app description, app category, etc.)
seems legitimate. To determine the change of permissions and
usage of APIs that require permissions across versions, we
leverage the permission lists of the axplorer project [41]. Its
authors provide mappings of Android SDK APIs to required
permissions up to Android version 7.1. In a first step, we
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extract the list of declared permissions from the apps’ manifest
files. We further extract the target SDK versions to determine
whether or not the app supports runtime permissions (target
API higher or equal to 23). We subsequently scan the apps’
bytecode for APIs that require dangerous permissions.

Attribution is another important aspect of the analysis, i.e.,
are permissions and their respective APIs used within the app
developer code or within some third-party library code. In
such cases, we would like to know the exact library (version).
To this end, we leverage the open-source tool LibScout [6]
that is capable of providing this information for a set of
205 commonly used libraries. To cover cases of unknown
third-party code, we extend the implementation to classify
any code not identified by LibScout into app or library code
based on the app package name as a heuristic. We finally
add functionality to attribute identified permission API calls
to either app code or library code (either detected by LibScout
or via our heuristic).

This collected information allows us in the following to
identify security and privacy relevant changes as a potentially
immediate result of an SPR.

D. Mapping SPR to SPU

The final step in our work-flow (see Figure 1) is to correlate
the SPR for an app with the security and privacy related
changes of an app. First, we identify potential candidate app
versions that might contain relevant app changes in connection
with an SPR, afterwards we analyze the candidate versions for
security and privacy relevant updates (e.g., in the app manifest
or code).

Identifying candidate app versions: Figure 5 illustrates
how we map SPR to candidate application updates. For every
SPR, we first assign the SPR to the immediate preceding app
version, SPR app version, released before the SPR. We then
look for security and privacy related updates in later versions
of the app after the SPR app version. In case we do not have
the release date of an app version, we skip that version. When
an SPU is found, this connection between the SPR and newly
found SPU is considered a match (i.e, the SPR potentially
influences the SPU).

SPR to SPU version distance: While in ideal scenarios,
we would expect SPU right after SPR, there are other factors

TABLE II
SECURITY- & PRIVACY-RELATED REVIEWS PER APP CATEGORY

Category (#apps) Total #SPR Mean #SPR/app

Tools (221) 1,343 7.5
Health And Fitness (30) 190 7.04
Shopping (35) 163 6.52
Sports (13) 54 6.0
Business (23) 113 5.95
Productivity (73) 364 5.69
Communication (66) 322 5.55
Media And Video (62) 192 5.33
Social (56) 215 5.12
Transportation (14) 42 4.67
Lifestyle (48) 136 4.53
News And Magazines (13) 47 4.27
Travel And Local (27) 89 4.05
Entertainment (98) 251 3.92
Personalization (112) 310 3.69
Finance (10) 25 3.57
Weather (19) 51 3.4
Photography (141) 228 3.3
Books And Reference (36) 73 3.04
Music And Audio (73) 144 2.94
Games (889) 1,149 2.78
Education (14) 22 2.44

which may contribute to the reasons why the next update
may not be an SPU. For instance, developers are working
on a particular feature of the app or they may only read
user reviews irregularly (e.g., reviews come in large number
[11]). We therefore take the distance between an SPR and an
SPU release into account. In particular, if there is an SPR for
version1 but an SPU is found at version4, then the distance
is 3. The longer the distance is, the less likely the SPU is
triggered by the SPR.

IV. EMPIRICAL ANALYSIS

We present the results and findings of our analysis of
security- and privacy-relevant reviews on Google Play and the
corresponding relevant changes in app updates. We refer to
Section VI for a discussion of our findings.

A. Security and Privacy Related Reviews (SPR)

In order to analyze whether SPR trigger security and privacy
relevant changes in app updates, it is first necessary to map
SPR to features that can be checked with code analysis
techniques. To this end, we first map SPR to permissions
(groups) and subsequently check for permission-based features
in app versions released after the SPR was posted.

1) Mentioned permissions: Our review classifier identified
5,527 SPR (0.12% of a total of 4,547,493 reviews) belonging
to 1,269 distinct apps. Each of these apps has an average
of 4.36 SPR (median = 2), where certain app categories
received more SPR (e.g., Tools) while others received less
(e.g., Games). Table II lists the number of SPR per category.
For 2,898/5,527 SPR, we are able to identify 4,180 permission-
related statements that can be assigned to 15 distinct permis-
sion groups. This implies that some SPR refer to multiple
permissions. The remaining 2,629 security and privacy related
reviews cannot unambiguously be mapped to permissions
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Fig. 6. Ten most mentioned permissions in SPR

without extra knowledge, e.g., “Worked fine, but removing due
to permission change without saying why...and if it is just for
ads say that” and “A Nice game, but ridiculous permissions
the game is very good, but the permissions in the last update
is ridiculous.” Figure 6 presents the permissions mentioned
most in SPR. The list is headed by the permissions to access
external storage, contacts and location. We created a separate
category “personal information” for SPR when users complain
about such data without mentioning specific permissions.

2) Runtime permissions vs. install-time permissions: In
October 2015, Google officially released Android 6.0 (API
level 23) and shifted from an install-time permission model
to a runtime permission delegation in which apps request
dangerous permissions dynamically at runtime. For the 2,126
applications for which we built the version history, 1,073
(50.5%) have adopted runtime permissions in their latest
version as of September 2017. Among the 1,269 apps that
have at least one SPR, a similar fraction (49.7%) has adopted
runtime permissions. To empirically investigate the effect of
runtime permission requests on users’ perception, we calculate
the percentage of SPR over the total number of app reviews
before and after an app adopted runtime permissions. To this
end, we check whether the targetSDK argument from the
apps’ manifests is set to API level 23 or higher. We then
conducted a t-test to compare the ratio of SPR per total
reviews of app versions with runtime permission and with
install-time permission. We found that there is significant
difference between the SPR ratio of apps with install-time
permission (mean = 0.001) and SPR ratio of apps with run-
time permission (mean = 0.0025) with a p-value of 0.02.
This suggests that apps with runtime permissions receive a
significantly higher number of SPR.

3) Developer responses: Some SPR are written by users
that do not understand context-specific permission requests or
do not have sufficient knowledge to assess the necessity of
a request [42]. Incomplete or missing app descriptions that
provide an intuition about the apps’ permission usage is one
contributing factor. To allow interaction with users, Google
offers a Reply to Reviews API [43]. To analyze to which
extent app developers make use of this feature, we crawl any

developer replies that have been made to the set of 5,527 SPR.
In total, we found 673 replies. With respect to the 5,527 SPR,
developers also implicitly reacted in 3,359 cases with SPU in
the subsequent app version. In 256 cases, the developer replied
(without making SPU) and in 417 cases we could observe
both replies and SPU. We manually examined these replies
and grouped them into the following categories:

• Explain (397): Developers explain the necessity of the
mentioned permissions

• Contact (130): Developers asked the user to contact them
and to provide more information

• Fix (96): Developers confirmed the SPR and reported that
a fix is already published or in progress.

• Pre-defined generic (50): Developers replied with pre-
defined generic answer templates

In about 56% of the cases, the developer explained the
necessity of permissions. Besides missing app descriptions,
install-time permissions are one of the factors that make it
difficult for the user to make the connection between permis-
sion and functionality. In our data set, the developers replied
with explanations for 234 app versions that were using install-
time permissions, in contrast to only 163 explanations for apps
with runtime permissions. Oftentimes, the developers ask users
to provide more information via mail. The reason for this is
the 350 character limit imposed by Google for both reviews
and replies. This severely impedes providing comprehensive
and detailed information about a specific issue. In 96 cases the
developer confirmed the user observation and reported that the
issue has already been fixed or the fix is in progress. For 78/96
cases, we could identify SPU in the subsequent version of the
respective app. For these cases, we can be very certain that the
SPU has been an immediate effect of an SPR. In 50 cases, the
developer simply replied with a pre-defined template without
responding to details of the review.

Figure 7 gives three examples for typical scenarios where
developers reply to SPR. In the first example, the developer
acknowledges the issues and announces a fix without providing
more details. In the second example, the developer explains
the necessity of the location permission. In this case, no SPU
are to be expected in subsequent versions. In the final example,
the developer announces a switch to runtime permissions in a
future version to provide more context for requests.

B. Security and Privacy Relevant App Updates (SPU)

We consider changes in the permission usage of an app as
SPU, since these changes would reflect what the user might
perceive in terms of security and privacy. Our static analysis
found the following SPU between all consecutive app releases
in our data set:

• Requested permissions removed from app: 1,608
• Permission-protected API calls removed: 1,085
• Lib calls removed that trigger protected APIs: 940

In the following, we analyze those changes further.
1) Permission changes: Figure 8 shows the top 10 per-

missions removed from the apps’ manifests with app updates
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location?
DEVELOPER: Fixed in version 2.6.2. Update will be available in

some hours.
Explanation → No Update

USER: Why do you need access to my location? Why on gods
good green earth does your app need access to my location info?
One star for the privacy steal.

DEVELOPER: Location used for showing and maintenance ads
only. App doesn’t use/save/share your location.

Explanation → Update
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Why does it need access to my photos and videos
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specific situations like saving configuration files etc. We are
working on new version with runtime permissions support, so
with upcoming version we will request the permissions only when
it will be necessary. Team (removed).

Fig. 7. Examples of user reviews and developers’ responses
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after an SPR was posted on Play. Reading the device’s phone
state and access to the external storage are the most frequently
removed permissions, with external storage also being the top
mentioned permission in SPR (see Section IV-A1). The ma-
jority of removed permissions allow access to sensitive data,
thus indicating a raised privacy awareness of users. Figure 9
shows the top 10 permissions from permission-protected API
calls that were removed from the apps. However, removing
permission-protected calls does not necessarily mean that the
app does no longer require that permission.

2) Change attribution: We identify the root causes for the
different results that we observe for removed permissions and
permission APIs. An important aspect is statically included
third-party code. Figure 10 lists the top 10 removed permis-
sions required by permission-protected API calls triggered by
calls to third-party libraries. Many of these permissions allow
to retrieve data suitable for user tracking, which has been
found in a variety of tracking and advertisement libraries [44].
An interesting case is the WAKE LOCK permission. A study
about wake lock misuse [45] showed that improper usage of
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this permission often manifests in battery drain, crashes, and
app instabilities. Besides permission requests, these are events
that can be observed by the user as well. We also found
that in 98.4% (925) of the cases the complete library was
removed as part of the app update. In only 14 cases merely the
library functionality that required the permission was removed.
Figure 11 shows the frequently removed libraries without
the extremely common Play Service and Android support
libraries. Half of these libraries constitute advertising libraries
that require at least the INTERNET permission, typical uses
often include ACCESS NETWORK STATE and location per-
missions as well. For apps that target install-time permissions,
the INTERNET permission was frequently mentioned in SPR
(228 instances), in particular when the app’s core functionality,
e.g., calculator or flashlight, obviously did not require network
access. With Android 6, Google downgraded this permission
to a normal protection level. As a consequence, it is granted
automatically and no longer shown to the user by default. SPR
complaining about the INTERNET permission for app versions
targeting Android 6 or higher dropped to just 38 instances.

We further used the results of the analysis to attribute SPU
to app developer and library code. To this end, we checked
for each permission mentioned in the review whether the
permission-protected API usage in the subsequent version is
exclusively located in app code, library code, or used in both
app and library. We found that in only 17% (72) of cases the
permission-protected APIs were exclusively used by app code,
while in 48.8% (206) of cases the APIs were exclusively used
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by library code. In the remaining 144 cases the permissions
were used by both the application and the included libraries.

C. SPR to SPU Mapping

In this section, we report the results of mapping SPR to
SPU and discuss factors that may influence the results.

a) Mapped SPR to SPU: We are able to unambiguously
map 4,898/5,527 SPR to the affected app versions. Only 629
SPR (11.38%) could not be mapped back to the affected
versions, because the review was posted before 2012 for which
we could not recover app upload dates. For 3,359/4,898 SPR
(68.6%) we could map the SPR to SPU identified in one of
the subsequent app versions. For the remaining 1,539 SPR, we
could not detect security and privacy relevant changes in app
updates. Figure 12 shows the distribution of the app version
distance from SPR to detected SPU for the set of 3,359 SPR.
In 76.8% of the cases we can observe SPU in the app version
immediately following the SPR. If we consider the interval
from one to five versions, this value increases to 94.4%. The
likelihood that SPU in an app versionx were triggered by the
SPR gradually decreases with the number of new app versions
released between SPR and versionx and other external factors
may have triggered the SPU instead.

b) SPU without SPR: To evaluate to which extent our
classifier misses SPR, we generate a backward mapping from
SPU to reviews. For the 5,994 SPU our static code analysis

found, 2,666 changes were observed without the presence of
any review and 1,488 changes could be mapped to SPR. This
leaves 1,840 SPU without SPR. Other reasons include external
factors, such as updated libraries, internal code reviews, and
developer notifications via different channels such as email.

c) SPR without SPU: To further validate our approach,
we also seek to find answers for the cases in which we
identify SPR but no SPU in the subsequent app versions.
When excluding the SPR that could successfully be mapped
to SPU (3,359) and the SPR that were posted prior to 2012
(629), this leaves 1,539 SPR for which we could not detect
SPU. Reasons for this include: 1) Replies to reviews in
which the developers explains the necessity of permissions or
acknowledges the report without modifying the application. In
these cases, no SPU are to be expected. 2) Limitations of our
static analysis, e.g., LibScout can detect about 205 popular
libraries, but there might exist more libraries that could have
an effect on the security and privacy of an application. In
addition, our analyzer checks for permission-protected APIs
only. This misses permission-protected content providers such
as Contacts for which an additional API argument analysis
would be necessary. 3) The app is no longer maintained. To
investigate why developers did not respond—neither with SPU
nor replies—we check whether developers still update their
apps after an SPR was posted. To this end we consider an app
no longer maintained if its last version is older than one year
starting from the day our crawler checked the latest version of
the app). This threshold is reasonable since prior work [46],
[47] has shown that most apps—in particular top apps—release
updates biweekly or monthly. We found 728/1,539 (47.3%)
SPR belonging to 244 unmaintained apps. Since these apps
are still available on Play, they receive new reviews but new
updates should not be expected.

D. Summary of Findings

We briefly summarize our findings from the empirical
analysis. We first crawled 4.5M reviews for 1,269 distinct apps
and identified 5,527 SP related reviews (SPR), out of which
2,898 SPR could be mapped to permissions. With our static
code analysis we could identify 5,994 SPU in app versions
following an SPR. In 60.8% of cases, we could successfully
map SPR to SPU. If we consider corresponding SPU (changes
to 3,359 SPR) and replies (273) as responses from developers
and exclude SPR of unmaintained apps (728), we can calculate
the developer response rate (RR) to SPR as follows:

RR =
#SPR with SPU + #SPR with replies

#SPR− #SPR of unmaintained apps
= 75.68%

Despite a small overall number of SPR compared to the total
number of reviews and the limited number of allowed text
(350 characters), we can observe that these short texts are an
effective means to trigger fast responses from developers. In
almost 76% of cases, the app developer responded to a SPR.

V. MODELING SECURITY AND PRIVACY UPDATES

To examine the impact of different factors on Android ap-
plication updates (SPU and non-SPU), we conducted multiple



regression models that predict whether an app update will
be security-/privacy-related or not. Our models include the
effects of user reviews, user rating, app’s permission mech-
anism (install-time or runtime), developer reply ratio, and app
category. To account for possible effects of multiple updates
of the same application, we use mixed models in which the
updates are attributed to their application (i.e., nested data)
and include random effects by allowing the intercepts to vary
at application level but aggregating them over all applications.
We compared a model with random effects against a model
without random effects, and our results show that the model
with random effects is significantly superior in its predictions.

Data set: From the collected app history, static analysis
results, and the identified SPR we built a data set of app
updates (including both SPU and non-SPU). In this data set,
we consider every change between two app version codes
for which at least one review is available as a data point
for our regression model, which yields 15,835 data points
in total (12,540 non-SPU and 3,295 SPU) when excluding
the ”Comics” and ”Libraries and Demo” categories since they
only have one and three apps, respectively. We consider the
following variables for every data point (i.e., app update) as
predictors in our regression models:

• SPR ratio: ratio of SPR over the total number of reviews
• Average score: average rating score that the correspond-

ing app version received since the last app update
• Permission mechanism: permission mechanism (runtime

or install-time) used by the app version
• App category: as defined in Google Play
• Reply ratio: the ratio of developer replies over the total

number of reviews since the previous app version
We consider SPR ratio and average score to be user variables,
while permission mechanism, app category, and reply ratio are
app variables. To account for SPR and average score that can
potentially have an impact on later versions of the app but
not the immediate version (see Section IV-C), we included
the impact of SPR and average score of the previous versions
within the version distance into the final SPR ratio and final
average score, respectively. The version distance between a
version (versioni) that has the SPR ratio and average score, and
the version that is being considered (versionj) is calculated by
the number of versions between versioni and versionj for the
analysis. Versioni is here a preceding version of versionj . The
final SPR ratio and final average score of the currently being
considered version are the cumulation of all of the previous
SPR ratios divided by their corresponding version distance,
and the cumulation of all previous average scores divided by
their corresponding version distance, respectively.

A. Correlation Analysis

Since the coefficient estimates of mixed models can be un-
stable and difficult to interpret if the model has multicollinear
variables, we first performed a correlation analysis of the
independent variables, such as ratio of SPR over total reviews,
reply ratio, and average score. The analysis showed that there
is no significant multicollinearity between any variables of

TABLE III
GOODNESS OF FIT FOR THE MODELS PREDICTING SPU. AIC = AKAIKE
INFORMATION CRITERION; DF = DEGREE OF FREEDOM; LOGLIK = LOG

LIKELIHOOD; PR(>CHISQ) QUANTIFIES STATISTICAL SIGNIFICANCE.
STATISTICALLY SIGNIFICANT VARIABLES ARE SHADED.

AIC logLik Df Pr(>Chisq)

simple regression 16198.23 -8098.12
mixed base regression 15654.05 -7825.03 1 <0.001
+ user variables 15570.16 -7781.08 2 <0.001
+ app variables 14830.06 -7388.03 23 <0.001
+ interaction 14831.54 -7387.77 1 0.471

SPR ratio, reply ratio, average score in our data set. We did
not include a variable that accounts for the SPU location, i.e,
whether security and privacy issues mentioned in an SPR were
located in application code or library code, since this variable
is derived from SPRs, which would violate the requirement for
regression analysis that predicting variables must be measured
independently. In our data set, the location of those issues are
completely dependent on SPRs, which is already represented
by the SPR ratio variable. We therefore excluded such a
location variable from our model.

B. Building the Models
To have a quality model, we need to only include variables

that are necessary and can account for as much of the variance
in the empirical data as possible. We start with a base model
without any independent variables and then subsequently ex-
tend it with more predictors. Table III presents the goodness of
fit for the relevant steps in building the corresponding models.
Since the dependent variable of our analysis is binary—either
an app update is SPU or non-SPU—we use logistic regression.

Moreover, to verify that a mixed model suits our data
better than a simple base model, we tested the base model
without any independent variables against the mixed models.
The result is that mixed models fit our data significantly better.
In particular, we extend the base model as follows:

• Start with base model with a random effect to account
for effects from updates of the same app

• Include variables at user level: SPR ratio, average score
• Include variables at app level: permission mechanism, app

category, developer’s reply ratio
• Include interaction between SPR ratio and average score

In each step, we calculated the model fit and used log
likelihood model fit comparison to check whether the later
model fits our data significantly better than the previous one.
For the final model, we chose the one with the best fit that was
significantly better in explaining our data than the previous.
This is a well established approach for model selection [48],
[49], [50], [51].

We compared all models according to their corresponding
Akaike information criterion (AIC), see Table III, which
estimates the relative quality of statistical models for a given
set of data. Smaller AIC scores indicate a better fit. Moreover,
we also used likelihood-ratio tests, which are evaluated using
Chi-squared distribution, to compare the models.



TABLE IV
LOGISTIC REGRESSION MIXED MODEL PREDICTING SP CHANGES.
STATISTICALLY SIGNIFICANT VARIABLES ARE HIGHLIGHTED. PM =

PERMISSION MECHANISM; CAT = APP CATEGORY

Estimate Std. Error z value Pr(> |z|)

(Intercept) -1.092 0.315 -3.465 <0.001
SPR ratio 2.568 0.796 3.225 0.001
avg score -0.094 0.006 -15.093 <0.001
reply ratio -0.420 0.157 -2.678 0.007
pm:run-time 1.360 0.054 25.276 <0.001
cat:Books Reference 0.096 0.367 0.261 0.794
cat:Business -0.039 0.374 -0.103 0.918
cat:Communication 0.098 0.347 0.281 0.779
cat:Education -0.403 0.418 -0.965 0.335
cat:Entertainment 0.526 0.334 1.573 0.116
cat:Finance 0.012 0.462 0.026 0.980
cat:Games 0.601 0.316 1.903 0.057
cat:Health Fitness 0.428 0.362 1.184 0.237
cat:Lifestyle -0.105 0.346 -0.303 0.762
cat:Media Video -0.035 0.346 -0.102 0.919
cat:Music Audio 0.324 0.339 0.956 0.339
cat:Personalization 0.047 0.331 0.141 0.888
cat:Photography 0.374 0.326 1.146 0.252
cat:Productivity 0.131 0.342 0.384 0.701
cat:Shopping 0.205 0.362 0.567 0.571
cat:Social -0.043 0.341 -0.127 0.899
cat:Sports -0.195 0.391 -0.498 0.618
cat:Tools 0.168 0.323 0.520 0.603
cat:Transportation 0.065 0.420 0.155 0.876
cat:Travel Local 0.115 0.400 0.288 0.773
cat:Weather 0.216 0.392 0.551 0.581

From Table III, we can see that the model with user and
app variables and without interaction has the lowest AIC score
(14830.06) and explains the data statistically significantly
better than other models. For permission mechanisms and
category, we choose install-time and News And Magazines
category respectively as base lines for categorical variables:
permission mechanism is a binary variable (either runtime or
install time) and we want to see to which extent changing
from install-time to runtime permission affects the interaction
between user and Android application; and News And Maga-
zines category’s average number of reviews per app coincides
with the global average number of reviews per app among all
categories (see Table II).

C. Results and Interpretation

Table IV presents our regression model that examines the
effect of different predictors for SPU. We can see that, in
comparison to install-time permission mechanism, runtime
permission dialogs have significantly positive impact on SPU
(odds ratio of 3.9). This means that updates of applications
(including app versions) whose permission mechanism is run-
time are significantly more likely to be relevant to security and
privacy. This further supports our earlier results that runtime
permissions raise users’ suspicions. Moreover, in comparison
to apps of News And Magazines category, apps belonging to
other categories do not differ significantly with regards to SPU.
This indicates that SPU of an app seemingly do not depend
on the app’s category. Most importantly, we can see that SPR
ratio is a significantly positive and strong predictor of SPU

(odds ratio: 13.04). This indicates that the more SPR the app
developers receive, the more likely they will release SPU.
In contrast to SPR ratio, reply ratio has negative impact on
SPU (odds ratio: 0.66), indicating that if developers reply to a
review, the less likely the following app updates are security-
and privacy-related. When we consider SPR, we see that most
of the developers’ replies are Explanation (see Section IV-A3)
why such permissions are needed. This is further supported
by our regression model. We argue that if permission requests
of Android apps are more transparent (e.g., better explanation,
request in context), users would understand why such requests
are indeed reasonable, hence developers would not need to
explain themselves in their replies. Finally, the average score
has a negative impact on SPU. More precisely, if an app is
receiving high scores (on average), then the next updates are
less likely to be related to security/privacy (odds ratio 0.91)

VI. DISCUSSION

We discuss shortcomings of our approach and interpret our
findings. Then, we highlight future work and a call for action.

A. Threats to Validity and Future Work

Our approach relies on the ability to map SPR back to app
versions in order to measure possible app changes as reaction
to user reviews. Similar to related work [6], we could not
retarget the upload dates for all versions of our dataset. In
particular, for app versions released before 2012 there exists
no reliable third-party source that can be queried for upload
dates. As a consequence, we failed to map 629/5,527 SPR
(11.38%) back to app versions and therefore cannot assess the
impact of these SPR on the app’s security and privacy.

Further, we use static code analysis to identify security
and privacy related changes in app versions (immediately)
following an SPR. This empirical evidence is a strong indicator
that these changes have been made as a (direct) consequence of
the SPR. Reasons for SPU range from following the principle
of least privilege to protecting users’ privacy to monetary
reasons due to bad ratings and a decline in the number of app
installations. For the small number of SPRs to which the devel-
oper replied and confirmed the issues, we can directly verify
our findings. However, in general, collecting the ground truth
would require conducting a developer survey to ask directly for
the incentive of these changes. Prior studies [52], [53] have
shown that recruiting a reasonable number of developers in
Google Play for a survey is challenging without direct infras-
tructure support of the market (i.e., response rates <1%). We
abstained from conducting a survey, as we only have a limited
set of 2,583 top apps, with an even smaller number of distinct
app developers and, hence, given prior experiences [52], [47],
a too small expected number of responses.

Another improvement would include adding a sentiment
analysis to our binary review classifier (SPR/non-SPR). This
could help in understanding ambiguous SPR where users com-
plain about requested permissions but still like the application
or when users complain but are explicitly fine with a good
explanation of the permission usage.



Lastly, we focused in our study on the top apps in Google
Play, for which a higher level of maintenance and developer
responsiveness to reviews would be expected. Our results
might not apply to the long tail of apps on Play. However, since
the top apps account for the bulk of the app downloads on
Play [24], [25], our results apply to the apps with the highest
impact on Android’s user base.

B. The Effect of SPR

Previous work has not given much attention to the influence
of end-users on security and privacy of apps via app reviews
(see Section II). Our results show that end-user complaints
based on observable evidence (permissions, crashes, or anoma-
lies like unusual battery drain) often lead to app changes
that improve security and privacy aspects. In cases where
the issues can be attributed to closed-source components (see
Section IV-B2), the developers might not even have been aware
of these problems without an involved code analysis, e.g.,
when the library documentations miss important details.

User reviews can also force app developers to react quickly
to issues due to the snowball effect. In many cases it is
not a single SPR that triggers app changes but a series of
SPR by different users (SPR ratio in regression model) or
SPR followed by a series of follow-up reviews with low
star ratings agreeing with the initial SPR (avg score between
app versions). Developers are then forced to react due to
a fear of losing reputation (star rating) and user base that
typically manifests in significant impact on revenue. As a
result, developers either try to quickly resolve the problem by
providing a better explanation to end-users or by addressing
the issue with an SPU.

Although our results emphasize the positive effect of SPR in
general, reviews could be much more informative and effective
without the current size limitation of 350 characters for both
reviews and replies imposed by Google. Such limits force
users to omit important details in reviews and make them
use alternative, unrestricted communication channels, such as
email (see developer responses in Section IV-A3). This also
prevents comprehensive app reviews as we know it from con-
sumer reviews for shops, such as Amazon. Although Google
is aware of this problem for years [54], no improvements have
been made to remedy the situation.

C. The Effect of Runtime Permissions

Permissions are one of the most important security and pri-
vacy indicators of apps that can be perceived even by less tech-
savvy users. However, the way how permission requests are
presented to the user greatly affects their effectiveness (e.g.,
habituation effects, user understanding, etc., see Section II).
The most drastic recent change in Android’s permission sys-
tem is the switch from install-time to runtime permissions,
from which we can also observe a ripple effect onto users’
reviews. Before Android 6, install-time permissions provided
a one-time decision possibility without context. Without an ex-
plicit connection from permissions to functionality, users have
to resort to (frequently missing or incomplete) app descriptions

for permission decisions. With the introduction of runtime per-
missions, permission requests are (typically) shown in context
and end-users may decide differently when the same request is
displayed on different occasions. Further, developers have the
possibility to augment permission requests with information
to explain the necessity of a permission in a given situation.
With the introduction of runtime permissions in Android 6,
Google did also change the protection levels of a significant
number of permissions. Before Android 6 (API level < 23)
there have been 38 dangerous permissions that were promi-
nently shown at install-time [41]. Starting with API level
23, Google refactored the permission system and specified
only 20 dangerous permissions. The remaining 18 permissions
have either been downgraded to normal permissions (that are
granted automatically and are not shown to the user by default)
or have been deprecated. Among the most prominent examples
are the INTERNET permission, used by the vast majority of
apps, and READ|WRITE_PROFILE. In addition, one single
permission READ_EXTERNAL_STORAGE was upgraded to
dangerous. This is also the top-mentioned permission in SPR
(16%, see Figure 6).

Our regression model (see Section V-C) suggests that ap-
plications adopting runtime permissions are significantly more
likely to perform SPU compared to apps that stick to install-
time permissions. But at the same time, the results indicate that
for apps with runtime permissions there is still a high number
of developer replies of type Explanation (163) in comparison
to apps with install-time permissions (234). This suggests
that many app developers do not follow runtime permission
best practices [55], i.e., adding explanations for permission
requests and requesting permissions in context rather than
requesting permissions on app launch. In terms of transparency
for the users, requiring the developers to add explanations
in permission dialogs should be opt-out instead of opt-in by
default. We think that our results support further investigation
of how app developers use the runtime permissions.

Google recently announced that in the second half of 2018,
Play will require new apps and app updates to adopt runtime
permissions, i.e., to target an API level ≥ 23 [56]. This will
likely allow end-user privacy assessments for a larger number
of apps, i.e., in our dataset about 45% of the top apps have not
adopted runtime permissions in their latest version. According
to our results this will generate more SPR and, as a result,
more SPU in apps.

D. User’s Perception of Risks and Privacy Incidents

Compared to related work, our results from studying users’
security- and privacy-related app reviews also suggest a change
in the user’s concerns over the last years. A large scale survey
on the perceived risks of smartphone users by Felt et al. [18]
indicated that sending premium messages, dialing premium
numbers, and deleting contacts were among the top risks in
2012. Contacts are still in the Top 2 mentioned permissions
(see Figure 6), but reading external storage and location—
now the top perceived risks—have previously been among
the lowest-ranked risks. This is partly because of additional



security features that impede using monetary services without
the user’s explicit consent and due to raised privacy aware-
ness of end-users. Past incidents have shown that simple
flashlight [57], [58] or wallpaper apps [59] misused access
rights to spy on the user or to exfiltrate personal data. As a
result, Google specified both privacy policy for apps [60] and
a general Unwanted Software Policy [61]. Developers were
notified that, by end of March 2017, ”Google Play requires
developers to provide a valid privacy policy when the app
requests or handles sensitive user or device information.” In
future work, we consider evaluating to which extent users’
SPR can be used to create trend analyses of users’ attitudes, in
particular in response to regulatory (e.g., policies) and system
changes (e.g., refactoring of permissions). For instance, in our
data set, the downgrade of the INTERNET permission lead to
a sharp decline in the number of SPR for that permission.

Moreover, a recent large-scale investigation of hidden track-
ing behavior in Android apps revealed that misuse of sensitive
data by third-party advertisement and tracking libraries is
even larger than ever [62]. In consequence, Google extended
its Unwanted Software Policy and additionally requires that
“if an app collects and transmits personal data unrelated
to the functionality of the app then, prior to collection and
transmission, the app must prominently highlight how the user
data will be used and have the user provide affirmative consent
for such use.” [63] This implies that adhering to the new policy
requires transparency for all included third-party components.
Related work [44], [19], [20], [64] indicated that particularly
advertising and tracking libraries are the main source of pri-
vacy violations and also our results (see Section IV-B2) show
that the majority of SPRs complain about behavior that apps
inherited from included libraries. However, most of these third-
party components are distributed as closed-source binaries and
many are not explicit about their usage of permissions and
end-user data. An open question will be how app developers
can handle these problems, as this kind of libraries is often
used as the main monetization factor. A related study [47]
showed that app developers need more support in handling
third-party libraries, both with better development tools and
a dedicated package manager for libraries. Similar assistance
will be necessary for developers to make educated decisions
on the choice of libraries to adhere to the new policy and
pro-actively avoid negative SPR on markets.

E. Call for Action

The strict enforcement of the 350 character limit, prevents
comprehensive and high quality reviews and forces users to
omit additional information. Increasing the limit will give
users the opportunity to write meaningful reviews and report
issues without having to resort to alternative, non-public
communication channels such as email. Both end-users and de-
velopers could also benefit from dedicated reviewer programs,
such as Amazon Vine [65], which promote trusted reviewers
that provide high-quality app assessments for incentives, such
as paid apps for free. Particularly developers of top apps
receive a high number of reviews every day, but only few of

them include a call for action. Approaches such as ours—
as standalone-tool or directly integrated into the developer
console—can effectively reduce the number of reviews that
have to be considered, hence making the time-consuming,
manual triage process more effective. Additionally, the process
of writing a review needs to be simplified to engage a higher
number of users to participate. Currently, writing a review with
a device constitutes a multi-step process via the Google Play
app. This could be optimized by extending app launchers to
provide such an option as an app shortcut [66] as a default for
all apps hosted on Play. Moving to runtime permissions is a
valuable step towards increasing the risk awareness. The latest
beta version of Android P continues this path by disallowing
idle apps to access the microphone and camera [67]. Any
attempt is shown to the user as symbol in a notification. It
has to be shown whether this is already effective or whether
such accesses should be highlighted in the status bar more
prominently.

VII. CONCLUSION

In this paper, we empirically studied the impact of user
reviews on Android application security and privacy features.
We automatically classified reviews into SPR and non-SPR.
We mapped SPR to mentioned app versions and conduct a
static code analysis to extract security- and privacy-related
code changes for these versions (SPU). We find that in 60.77%
of all cases the SPR triggered an SPU. The majority of these
changes can be attributed to (closed-source) third-party code
like advertising or tracking libraries. Furthermore, we built a
regression model to evaluate the impact of different factors
on SPU. With our regression model, we showed that SPR
are significant predictors for SPU. In the majority of cases,
app developers directly change the respective app code or
publicly reply to users and explain why certain permissions
are required. We have further seen that the adoption of runtime
permissions has a significant positive effect on users’ privacy
perception. With the announced enforcement of runtime per-
mission adoption, the absolute number of SPR is likely to
increase in the near future, which in turn will help to improve
app security and privacy in general.

Our results make a call for action to further increase the
transparency of apps to foster more SPR as way to increase
privacy-friendly app behavior; but also call for better tools to
support developers in adhering to privacy regulations and their
users’ privacy preferences. Lastly, our approach might inspire
future research to employ user reviews as a way to measure
the effects of changes in regulations or Android’s design.
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